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9 Expectation and Variance

Two numbers are often used to summarize a probability distribu-
tion for a random variable X. The mean is a measure of the cen-
ter or middle of the probability distribution, and the variance is a
measure of the dispersion, or variability in the distribution. These
two measures do not uniquely identify a probability distribution.
That is, two different distributions can have the same mean and
variance. Still, these measures are simple, useful summaries of the
probability distribution of X.

9.1 Expectation of Discrete Random Variable

The most important characteristic of a random variable is its ex-
pectation. Synonyms for expectation are expected value, mean,
and first moment.

The definition of expectation is motivated by the conventional
idea of numerical average. Recall that the numerical average of n
numbers, say a1, a2, . . . , an is

1

n

n∑
k=1

ak.

We use the average to summarize or characterize the entire collec-
tion of numbers a1, . . . , an with a single value.
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Example 9.1. Consider 10 numbers: 5, 2, 3, 2, 5, -2, 3, 2, 5, 2.
The average is

5 + 2 + 3 + 2 + 5 + (−2) + 3 + 2 + 5 + 2

10
=

27

10
= 2.7.

We can rewrite the above calculation as

−2× 1

10
+ 2× 4

10
+ 3× 2

10
+ 5× 3

10

Definition 9.2. Suppose X is a discrete random variable, we de-
fine the expectation (or mean or expected value) of X by

EX =
∑
x

x× P [X = x] =
∑
x

x× pX(x). (15)

In other words, The expected value of a discrete random variable
is a weighted mean of the values the random variable can take on
where the weights come from the pmf of the random variable.

• Some references use mX or µX to represent EX.

• For conciseness, we simply write x under the summation sym-
bol in (15); this means that the sum runs over all x values in
the support of X. (Of course, for x outside of the support,
pX(x) is 0 anyway.)

9.3. Analogy: In mechanics, think of point masses on a line with
a mass of pX(x) kg. at a distance x meters from the origin.

In this model, EX is the center of mass (the balance point).
This is why pX(x) is called probability mass function.
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Example 9.4. When X ∼ Bernoulli(p) with p ∈ (0, 1),

Note that, since X takes only the values 0 and 1, its expected
value p is “never seen”.

9.5. Interpretation: The expected value is in general not a typical
value that the random variable can take on. It is often helpful to
interpret the expected value of a random variable as the long-run
average value of the variable over many independent repetitions
of an experiment

Example 9.6. pX (x) =


1/4, x = 0
3/4, x = 2
0, otherwise

Example 9.7. For X ∼ P(α),

EX =
∞∑
i=0

ie−α
(α)i

i!
=
∞∑
i=1

e−α
(α)i

i!
i+ 0 = e−α (α)

∞∑
i=1

(α)i−1

(i− 1)!

= e−αα
∞∑
k=0

αk

k!
= e−ααeα = α.

Example 9.8. For X ∼ B(n, p),

EX =
n∑
i=0

i

(
n

i

)
pi(1− p)n−i =

n∑
i=1

i
n!

i! (n− i)!p
i(1− p)n−i

= n
n∑
i=1

(n− 1)!

(i− 1)! (n− i)!p
i(1− p)n−i = n

n∑
i=1

(
n− 1

i− 1

)
pi(1− p)n−i

Let k = i− 1. Then,

EX = n

n−1∑
k=0

(
n− 1

k

)
pk+1(1− p)n−(k+1) = np

n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−1−k

We now have the expression in the form that we can apply the binomial theorem
which finally gives

EX = np(p+ (1− p))n−1 = np.

We shall revisit this example again using another approach in Example 11.41.
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Example 9.9. Calculation of Expected Profit

Game #1: Flip a fair coin.

• H: You get $200

• T: You lose $100

Game #2: Flip a biased coin with P ({H}) = 10−6.

• H: You get $2,000,000

• T: You lose $0

Game #3: Pay $50 to play the game.
Flip a biased coin with P ({H}) = 10−6.

• H: You get $2,000,000

• T: You lose $0

Example 9.10. Pascal’s wager : Suppose you concede that you
don’t know whether or not God exists and therefore assign a 50
percent chance to either proposition. How should you weigh these
odds when deciding whether to lead a pious life? If you act piously
and God exists, Pascal argued, your gain–eternal happiness–is in-
finite. If, on the other hand, God does not exist, your loss, or
negative return, is small–the sacrifices of piety. To weigh these
possible gains and losses, Pascal proposed, you multiply the prob-
ability of each possible outcome by its payoff and add them all up,
forming a kind of average or expected payoff. In other words, the
mathematical expectation of your return on piety is one-half infin-
ity (your gain if God exists) minus one-half a small number (your
loss if he does not exist). Pascal knew enough about infinity to
know that the answer to this calculation is infinite, and thus the
expected return on piety is infinitely positive. Every reasonable
person, Pascal concluded, should therefore follow the laws of God.
[14, p 76]

• Pascals wager is often considered the founding of the math-
ematical discipline of game theory, the quantitative study of
optimal decision strategies in games.

123



Example 9.11. A sweepstakes sent through the mail offered a
grand prize of $5 million. All you had to do to win was mail in
your entry. There was no limit on how many times you could enter,
but each entry had to be mailed in separately. The sponsors were
apparently expecting about 200 million entries, because the fine
print said that the chances of winning were 1 in 200 million. Does
it pay to enter this kind of “free sweepstakes offer”?

Multiplying the probability of winning times the payoff, we find
that each entry was worth 1/40 of $1, or $0.025 far less than the
cost of mailing it in. In fact, the big winner in this contest was
the post office, which, if the projections were correct, made nearly
$80 million in postage revenue on all the submissions. [14, p 77]

9.12. Technical issue: Definition (15) is only meaningful if the
sum is well defined.

The sum of infinitely many nonnegative terms is always well-
defined, with +∞ as a possible value for the sum.

• Infinite Expectation : Consider a random variable X whose
pmf is defined by

pX (x) =

{
1
cx2 , x = 1, 2, 3, . . .
0, otherwise

Then, c =
∑∞

n=1
1
n2 which is a finite positive number (π2/6).

However,

EX =
∞∑
k=1

kpX(k) =
∞∑
k=1

k
1

c

1

k2
=

1

c

∞∑
k=1

1

k
= +∞.

Some care is necessary when computing expectations of signed
random variables that take infinitely many values.

• The sum over countably infinite many terms is not always well
defined when both positive and negative terms are involved.

• For example, the infinite series 1−1 + 1−1 + . . . has the sum
0 when you sum the terms according to (1−1)+(1−1)+ · · · ,
whereas you get the sum 1 when you sum the terms according
to 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · · .
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• Such abnormalities cannot happen when all terms in the infi-
nite summation are nonnegative.

It is the convention in probability theory that EX should be eval-
uated as

EX =
∑
x≥0

xpX(x)−
∑
x<0

(−x)pX(x),

• If at least one of these sums is finite, then it is clear what
value should be assigned as EX.

• If both sums are +∞, then no value is assigned to EX, and
we say that EX is undefined.

Example 9.13. Undefined Expectation: Let

pX (x) =

{
1

2cx2 , x = ±1,±2,±3, . . .
0, otherwise

Then,

EX =
∞∑
k=1

kpX (k)−
−1∑

k=−∞
(−k) pX (k).

The first sum gives

∞∑
k=1

kpX (k) =
∞∑
k=1

k
1

2ck2
=

1

2c

∞∑
k=1

1

k
=
∞
2c
.

The second sum gives

−1∑
k=−∞

(−k) pX (k) =
∞∑
k=1

kpX (−k) =
∞∑
k=1

k
1

2ck2
=

1

2c

∞∑
k=1

1

k
=
∞
2c
.

Because both sums are infinite, we conclude that EX is undefined.

9.14. More rigorously, to define EX, we let X+ = max {X, 0} and
X− = −min {X, 0}. Then observe that X = X+ − X− and that
both X+ and X− are nonnegative r.v.’s. We say that a random
variable X admits an expectation if EX+ and EX− are not
both equal to +∞. In which case, EX = EX+ − EX−.
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9.2 Function of a Discrete Random Variable

Given a random variable X, we will often have occasion to define
a new random variable by Y ≡ g(X), where g(x) is a real-valued
function of the real-valued variable x. More precisely, recall that
a random variable X is actually a function taking points of the
sample space, ω ∈ Ω, into real numbers X(ω). Hence, we have the
following definition:

Definition 9.15. The notation Y = g(X) is actually shorthand
for Y (ω) := g(X(ω)).

• The random variable Y = g(X) is sometimes called derived
random variable.

Example 9.16. Let

pX (x) =

{
1
cx

2, x = ±1,±2
0, otherwise

and
Y = X4.

Find pY (y) and then calculate EY .

9.17. For discrete random variable X, the pmf of a derived ran-
dom variable Y = g(X) is given by

pY (y) =
∑

x:g(x)=y

pX(x).
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Note that the sum is over all x in the support of X which satisfy
g(x) = y.

Example 9.18. A “binary” random variable X takes only two
values a and b with

P [X = b] = 1− P [X = a] = p.

X can be expressed as X = (b − a)I + a, where I is a Bernoulli
random variable with parameter p.

9.3 Expectation of a Function of a Discrete Random
Variable

Recall that for discrete random variable X, the pmf of a derived
random variable Y = g(X) is given by

pY (y) =
∑

x:g(x)=y

pX(x).

If we want to compute EY , it might seem that we first have to
find the pmf of Y . Typically, this requires a detailed analysis of g
which can be complicated, and it is avoided by the following result.

9.19. Suppose X is a discrete random variable.

E [g(X)] =
∑
x

g(x)pX(x).

This is referred to as the law/rule of the lazy/unconcious
statistician (LOTUS) [22, Thm 3.6 p 48],[9, p. 149],[8, p. 50]
because it is so much easier to use the above formula than to first
find the pmf of Y . It is also called substitution rule [21, p 271].

Example 9.20. Back to Example 9.16. Recall that

pX (x) =

{
1
cx

2, x = ±1,±2
0, otherwise

(a) When Y = X4, EY =
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(b) E [2X − 1]

9.21. Caution: A frequently made mistake of beginning students
is to set E [g(X)] equal to g (EX). In general, E [g(X)] 6= g (EX).

(a) In particular, E
[

1
X

]
is not the same as 1

EX .

(b) An exception is the case of an affine function g(x) = ax + b.
See also (9.27).

Example 9.22. Continue from Example 9.16 and Example 9.20.

Example 9.23. Continue from Example 9.4. ForX ∼ Bernoulli(p),

(a) EX = p

(b) E
[
X2
]

= 02 × (1− p) + 12 × p = p 6= (EX)2.

Example 9.24. Continue from Example 9.7. Suppose X ∼ P(α).

E
[
X2
]

=
∞∑
i=0

i2e−α
αi

i!
= e−αα

∞∑
i=1

i
αi−1

(i− 1)!
(16)

We can evaluate the infinite sum in (16) by rewriting i as i−1+1:
∞∑
i=1

i
αi−1

(i− 1)!
=

∞∑
i=1

(i− 1 + 1)
αi−1

(i− 1)!
=

∞∑
i=1

(i− 1)
αi−1

(i− 1)!
+

∞∑
i=1

αi−1

(i− 1)!

= α
∞∑
i=2

αi−2

(i− 2)!
+

∞∑
i=1

αi−1

(i− 1)!
= αeα + eα = eα(α+ 1).

Plugging this back into (16), we get

E
[
X2
]

= α (α + 1) = α2 + α.

9.25. Continue from Example 9.8. For X ∼ B(n, p), one can find
E
[
X2
]

= np(1− p) + (np)2.
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Example 9.26. Let pX (x) =


1/3, x ∈ {−1, 1} ,
1/6, x ∈ {−2, 2} ,
0, otherwise.

Find EX and

E
[
X2
]
.

9.27. Some Basic Properties of Expectations

(a) For c ∈ R, E [c] = c

(b) For c ∈ R, E [X + c] = EX + c and E [cX] = cEX

(c) For constants a, b, we have

E [aX + b] = aEX + b.

(d) For constants c1 and c2,

E [c1g1(X) + c2g2(X)] = c1E [g1(X)] + c2E [g2(X)] .

(e) For constants c1, c2, . . . , cn,

E

[
n∑
k=1

ckgk(X)

]
=

n∑
k=1

ckE [gk(X)] .

Definition 9.28. Some definitions involving expectation of a func-
tion of a random variable:

(a) Absolute moment : E
[
|X|k

]
, where we define E

[
|X|0

]
= 1

(b) Moment : mk = E
[
Xk
]

= the kth moment of X, k ∈ N.

• The first moment of X is its expectation EX.

• The second moment of X is E
[
X2
]
.
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9.4 Variance and Standard Deviation

An average (expectation) can be regarded as one number that
summarizes an entire probability model. After finding an average,
someone who wants to look further into the probability model
might ask, “How typical is the average?” or, “What are the
chances of observing an event far from the average?” A measure
of dispersion/deviation/spread is an answer to these questions
wrapped up in a single number. (The opposite of this measure is
the peakedness.) If this measure is small, observations are likely
to be near the average. A high measure of dispersion suggests that
it is not unusual to observe events that are far from the average.

Example 9.29. Consider your score on the midterm exam. After
you find out your score is 7 points above average, you are likely to
ask, “How good is that? Is it near the top of the class or somewhere
near the middle?”.

Example 9.30. In the case that the random variable X is the
random payoff in a game that can be repeated many times under
identical conditions, the expected value of X is an informative
measure on the grounds of the law of large numbers. However, the
information provided by EX is usually not sufficient when X is
the random payoff in a nonrepeatable game.

Suppose your investment has yielded a profit of $3,000 and you
must choose between the following two options:

• the first option is to take the sure profit of $3,000 and

• the second option is to reinvest the profit of $3,000 under the
scenario that this profit increases to $4,000 with probability
0.8 and is lost with probability 0.2.

The expected profit of the second option is

0.8× $4, 000 + 0.2× $0 = $3, 200

and is larger than the $3,000 from the first option. Nevertheless,
most people would prefer the first option. The downside risk is
too big for them. A measure that takes into account the aspect of
risk is the variance of a random variable. [21, p 35]
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9.31. The most important measures of dispersion are the
standard deviation and its close relative, the variance.

Definition 9.32. Variance :

VarX = E
[
(X − EX)2

]
. (17)

• Read “the variance of X”

• Notation: DX , or σ2 (X), or σ2
X , or VX [22, p. 51]

• In some references, to avoid confusion from the two expecta-
tion symbols, they first define m = EX and then define the
variance of X by

VarX = E
[
(X −m)2

]
.

• We can also calculate the variance via another identity:

VarX = E
[
X2
]
− (EX)2

• The units of the variance are squares of the units of the ran-
dom variable.

9.33. Basic properties of variance:

• VarX ≥ 0.

• VarX ≤ E
[
X2
]
.

• Var[cX] = c2 VarX.

• Var[X + c] = VarX.

• Var[aX + b] = a2 VarX.

Example 9.34. In Example 9.26, we found that EX = 0 and
E
[
X2
]

= 2. Therefore,
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Definition 9.35. Standard Deviation :

σX =
√

Var[X].

• It is useful to work with the standard deviation since it has
the same units as EX.

• Informally we think of outcomes within ±σX of EX as being
in the center of the distribution. Some references would in-
formally interpret sample values within ±σX of the expected
value, x ∈ [EX − σX ,EX + σX ], as “typical” values of X and
other values as “unusual”.

• σaX+b = |a|σX .

9.36. σX and
√

VarX: Note that the
√· function is a strictly

increasing function. Because σX =
√

VarX, if one of them is
large, another one is also large. Therefore, both values quantify
the amount of spread/dispersion in RV X (which can be observed
from the spread or dispersion of the pmf or the histogram or the
relative frequency graph). However, VarX does not have the same
unit as the RV X.

9.37. In finance, standard deviation is a key concept and is used
to measure the volatility (risk) of investment returns and stock
returns.

It is common wisdom in finance that diversification of a portfolio
of stocks generally reduces the total risk exposure of the invest-
ment. We shall return to this point in Example 11.60.

Example 9.38. Continue from Example 9.29. If the standard
deviation of exam scores is 12 points, the student with a score of
+7 with respect to the mean can think of herself in the middle of
the class. If the standard deviation is 3 points, she is likely to be
near the top.

Example 9.39. Suppose X ∼ Bernoulli(p).

(a) E
[
X2
]

= 02 × (1− p) + 12 × p = p.
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(b) VarX = EX2 − (EX)2 = p− p2 = p(1− p).
Alternatively, if we directly use (17), we have

VarX = E
[
(X − EX)2

]
= (0− p)2 × (1− p) + (1− p)2 × p

= p(1− p)(p+ (1− p)) = p(1− p).

Example 9.40. Continue from Example 9.7 and Example 9.24.
When X ∼ P(α), we have

VarX = E
[
X2
]
− (EX)2 = α2 + α− α2 = α.

Therefore, for Poisson random variable, the expected value is the
same as the variance.

9.41. Continue from Example 9.8 and Example 9.25.
When X ∼ B(n, p), we have VarX = np(1− p).
Example 9.42. Consider the two pmfs shown in Figure 20. The
random variable X with pmf at the left has a smaller variance
than the random variable Y with pmf at the right because more
probability mass is concentrated near zero (their mean) in the
graph at the left than in the graph at the right. [9, p. 85]

2.4 Expectation 85

The variance is the average squared deviation of X about its mean. The variance character-

izes how likely it is to observe values of the random variable far from its mean. For example,

consider the two pmfs shown in Figure 2.9. More probability mass is concentrated near zero

in the graph at the left than in the graph at the right.

ip
X

( )

0 1 2−1
i

−2

1/6

1/3

Y
ip ( )

0 1 2−1
i

−2

1/6

1/3

Figure 2.9. Example 2.27 shows that the random variable X with pmf at the left has a smaller variance than the

random variable Y with pmf at the right.

Example 2.27. Let X and Y be the random variables with respective pmfs shown in

Figure 2.9. Compute var(X) and var(Y ).

Solution. By symmetry, both X and Y have zero mean, and so var(X) = E[X2] and

var(Y ) = E[Y 2]. Write

E[X2] = (−2)2 1
6
+(−1)2 1

3
+(1)2 1

3
+(2)2 1

6
= 2,

and

E[Y 2] = (−2)2 1
3
+(−1)2 1

6
+(1)2 1

6
+(2)2 1

3
= 3.

Thus, X and Y are both zero-mean random variables taking the values ±1 and ±2. But Y

is more likely to take values far from its mean. This is reflected by the fact that var(Y ) >
var(X).

When a random variable does not have zero mean, it is often convenient to use the

variance formula,

var(X) = E[X2]− (E[X ])2, (2.17)

which says that the variance is equal to the second moment minus the square of the first

moment. To derive the variance formula, write

var(X) := E[(X −m)2]

= E[X2 −2mX +m2]

= E[X2]−2mE[X ]+m2, by linearity,

= E[X2]−m2

= E[X2]− (E[X ])2.

The standard deviation of X is defined to be the positive square root of the variance. Since

the variance of a random variable is often denoted by the symbol σ2, the standard deviation

is denoted by σ .

Figure 20: Example 9.42 shows that a random variable whose probability mass
is concentrated near the mean has smaller variance. [9, Fig. 2.9]

9.43. We have already talked about variance and standard de-
viation as a number that indicates spread/dispersion of the pmf.
More specifically, let’s imagine a pmf that shapes like a bell curve.
As the value of σX gets smaller, the spread of the pmf will be
smaller and hence the pmf would “look sharper”. Therefore, the
probability that the random variable X would take a value that is
far from the mean would be smaller.
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The next property involves the use of σX to bound “the tail
probability” of a random variable.

9.44. Chebyshev’s Inequality :

P [|X − EX| ≥ α] ≤ σ2
X

α2

or equivalently

P [|X − EX| ≥ nσX ] ≤ 1

n2

• Useful only when α > σX

Example 9.45. If X has mean m and variance σ2, it is sometimes
convenient to introduce the normalized random variable

Y =
X −m
σ

.

Definition 9.46. Central Moments : A generalization of the
variance is the nth central moment which is defined to be

µn = E [(X − EX)n] .

(a) µ1 = E [X − EX] = 0.

(b) µ2 = σ2
X = VarX: the second central moment is the variance.
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